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It was shown experimentally in [1-4] that free inertial oscillations excited in one or another way in a rotating fluid 

generate oscillating vortices in it, the structure and behavior of the vortices, as well as the whole structure of resulting flow, 

being determined by the set of eigenmodes dominating in the flow. But these characteristics are not related uniquely to a certain 

method of initiating the oscillations, since one and the same mode can be excited in many different ways. 
Generators of periodic disturbances with frequencies corresponding to the eigenfrequencies were used in [1-3] to induce 

free oscillations with oscillating vortices. In [4] the oscillations were formed due to rapid disturbance of a rotating fluid from 

the equilibrium conditions by pulling a body through it. Despite the difference in the techniques applied in [I-4] to excite the 
oscillations, one could observe similar flow patterns with concentrated vortices during excitation of modes of similar geometry. 

Consequently, the effect of formation of oscillating vortices in itself is not related to a certain method of action on the rotating 
fluid, but is inherent in the rotating fluid itself. To a certain extent, this is its universal response to various disturbances. 

Various inertial modes can generate vortices of different structure and oscillation frequency. But as has been shown 
experimentally [1-4], their formation does not depend directly on the mode geometry. On the other hand, it is obvious that the 

oscillating vortices do not appear in the absence of the disturbance generators and the oscillations due to them. Varying the 
parameters of initial flow and disturbance, one can attempt to fmd experimentally the generalized criteria responsible for the 

presence and absence of concentrated oscillating vortices in a rotating fluid. This paper presents a logical continuation of the 

work started in [1]. 
The experiments were performed using the same experimental device and measuring technique as in [1]. A schematic 

diagram of the device is presented in Fig. 1. A water-filled and hermetically sealed transparent cylindrical container 1 is 
mounted vertically on a rotating platform coaxial with the container. The bottom of the container 2 is made of elastic rubber. 

Periodic disturbance of the rotating liquid is provided by a generator consisting of hemispheres 3 mounted on a disc 4. The 
generator is supported on a shaft 5 coaxial with the container and which can rotate relative to the container and can move in 

the vertical direction. 
Before the experiment the liquid in the container was brought into rigid rotation with angular velocity fl, and the 

generator was driven up to angular velocity ~. Then the generator was raised through a height h from the position where the 

hemispheres touch the rubber membrane bottom. The hemisphere therefore pressed into the bottom and produced rounded 

bulges on it, which move with respect to the container with the required velocity. The flow induced by the disturbance was 
studied by visual observation. Polymer spheres of small negative buoyancy (p = 1.00-1.05 g/cm 3) up to 1 mm in size were 

used to make the flow visual. 
Considering the disturbance technique and digressing from an exact description of the shape of the elastic bottom, one 

can characterize the problem using eight parameters. These are f~, r h, H, and R (the height and radius of the container), v 
(the kinematic coefficient of viscosity), and M and b (the number of disturbing bodies and radius of their arrangement, 

respectively). It is accepted that when M > 1 all bodies are placed at equal distance from the axis. Let us apply the same set 

of six independent dimensionless parameters as that used in [1], which involves H/R, b/R, h/R, M, and the relative excitation 
frequency f = 1 -oJ/fl. We shall also apply the wave Reynolds number Re = fflbMhk/(2R), whose substantial effect on the 

flow was considered in [1]. The combination fgbMh/R involved in Re characterizes the relative velocity introduced by the 
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disturbance, while )x/2 (the half wavelength along the rotation axis of the analogous length for the radial direction, if it is less 

than the latter) is the characteristic dimension with which the change of velocity in the wave occurs. The following parameters 

were held constant in the experiments: R = 25 cm, b/R = 0.78, the curvature radius of  the hemispheres was 4.5 cm. 

Since the rotating liquid is the elastic medium, the above excitation (at least, when its frequency is within the inertia 

range) should lead (and actually led) in the experiments to the excitation of inertial waves in the liquid. For the observed 

nonaxisymmetric waves in the cylindrical container with rigidly rotating liquid the linear theory gives [5]. 

~, = ~ ( , ~ , . T / R ) e x p ( i ~ j z / t t  + l m ( o  - ~t)); 

O) 

Here r, 0, and z are the radial, angular, and longitudinal components of the cylindrical coordinate system, v is the z-component 

of the velocity, oa is the wave frequency, m = 1, 2 . . . .  is the angular wave number, I m is a Bessel function of the first kind 

of order of m, and j is an integer having the meaning of the number of zeros of radial velocity component over the interval 

0 < r < R; f = 1-o~/~1. The nonpenetration condition with r = R leads to the equation for ~ = ~mj 

dt  ,(,::,:) 
2~(,~) + .ta ~ -  0, 

which together with (1) determines the dependence of the longitudinal wave numbers kmj on the dimensionless relative 

frequency f. With If[ > 2/m the numbers kmj are purely imaginary. 
A disturbance with an arbitrary relative frequency f induces travelling waves with different kmj, which, due to repeated 

reflections, interaction with each other, and dissipation should yield in the simplest case a picture of steady forced oscillations. 

If  even for one of  the waves the relationship kmj = n r  (n - 1, 2 . . . .  ) holds to a sufficient accuracy, then the conditions of 

resonance excitation of  the appropriate mode of free oscillations are realized in the container. The aggregate of three integers 

(m, j, n) prescribes the eigenmode configuration. 

Substantial excitation of any inertial mode in the general case produces a system of several cyclone and anticyclone 

vortices [1-4]. The oscillating cyclone vortices are of high radial, axial, and circular velocities of the fluid motion. The angular 

rotation velocity inside the cyclones can achieve 50~ [2, 3]. Anticyclones do not acquire high velocities and cannot be found 

visually. Therefore, we will be further concerned only with cyclone vortices. 

All cyclones described in [1-4] and the present work are of similar structure and behavior. We shall explain this 

similarity in detail. 

The vortex appearing in the near-axial region under excitation of the axisymmetrical (m = 0) mode with one half-wave 

along the rotation axis (n = 1) can serve as the most simple, apparent, and easy-to-observe example of the cyclone. Such modes 
were observed in [2-4]. 

A diagram of the flow in the vortex is shown in Fig. 2. One can distinguish four characteristic zones in the flow: 1 

and 3 are the annular regions of  high radial velocity, 2 is the region of high axial velocity and high relative angular velocity 

or rotation, and 4 is the region of moderate velocities. At one half-period of the vortex oscillations the liquid flows from region 

1 to region 2, and then from region 2 to region 3. In this case, as the circulation is retained, the rotation velocity of the liquid 

flowing from region 1 to region 2 increases and the maximum angular velocity of rotation is attained to the moment of stoppage 
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or radial flow at the vortex axis at the level z = k/2. For the same reason when the liquid flows from the region 2 to region 

3 its rotation velocity decreases, and the minimum angular velocity of rotation is achieved up to the moment of  stoppage of 

radial flow at the annular region at z = 0. At the other half-period of the vortex oscillation the flow pattern changes inversely 

with time. 

In any oscillation phase the direction of the relative rotation of the liquid remains cyclonic in the greater part of the 

region 2 (except for the vicinities of the levels z = 0, k/2). Figure 3 shows a series of frames of  one period of  the vortex 

oscillations obtained in [4], which illustrates the diagram of the flow from Fig. 2. The flow was made visual with polyethylene 
granules (a = 0.95 g/cm3). 

The flow shown in Fig. 2 is the minimum structure element of any one-mode oscillating cyclone. The diagram of the 

flow in the axial vortex during excitation of the mode (0, j, n) is constructed by vertical matching of n coaxial half-wave 

sections analogous to that shown in Fig. 2. (The velocity fields in the neighboring sections, being in antiphase to each other, 

provide discontinuity.) Thus, with n > 1 the regions of radial convergence-divergence are placed not only at the upper and 

lower boundaries, but also inside the liquid. 

The one-mode vortex placed outside of the container axis is roughly of the same structure as the axial vortex with the 

same n, but it has its peculiar features stemming from the surrounding flow. Being in the inertial wave, the vortex is apt to 

drift, which results in the incidence and precession of its axis to the wave frequency. Depending on the amplitude and geometry 

of the wave, the slope of  the axis can be either hardly noticeable or rather substantial. In the adjacent vertical sections the drift 

of the vortex is accomplished again in antiphase; therefore, its axis resembles a "snake." The qualitative structure of the off-axis 

one-mode cyclone is shown in Fig. 4 by the example of the vortex for the mode with n = 3. 

The one-mode vortices with equal n are of the same qualitative structure irrespective of m and j and in the general case 

are distinguished by the oscillation frequency, the slope of the axis, and other qualitative characteristics of the flow. 

Under arbitrary disturbance of the rotating liquid, for example, as in [4], the set of inertial eigenmodes is excited 

simultaneously. The oscillating vortices appear in this case as well, but they do not have to be of  such an explicit periodicity 

in space and time. Therefore, it is much more difficult to indicate the modes responsible for the vortex formation. However, 

it is possible with one or two dominating modes. The two-mode vortex is subject to two-period oscillations (beats), and s, 

having determined both periods, one can reveal the frequencies of the generating vortices, and taking account of the evolution 
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in the vertical vortex structure, determine the modes themselves. This can occur when two modes with different m and j 

dominate each at its own radius range, and the vortices placed in these annular zones will follow mainly the frequency and 

structure of one of  the modes. 
Introducing disturbances into a rotating fluid, one can obtain a wide variety of flow patterns. Depending on the 

amplitude and geometry of the excited modes, as well as on the stage of evolution of the flow, there can be different numbers 

of concentrated oscillating vortices. However, according to the purpose of the present paper only the presence or absence of 

the vortices is of  interest for us, while their number, vertical structure, intensity, and location can be neglected. Therefore, 

below we discuss the most general and substantial characteristics and peculiarities of the flow and disturbance. 

With strict formulation the question of presence or absence of concentrated oscillating vortices in a rotating liquid is 

converted into that of appearance or absence of such vortices over the given time interval due to the action of the given 

disturbances generator on an originally equilibrium rotating liquid. That is the reason why the time of generation of only one 

vortex in the flow was the principal quantity measured in the experiments. Since there are no examples of more or less accurate 

definition of this parameter for oscillating vortex in the literature, the author had to select the time interval to be measured to 

ensure high reproducibility and minimum random error in the measurements. 

For this purpose, we distinguished in numerous observations the most remarkable and reliably recorded phase of the 

vortex evolution. The time of  inception of the phase from the moment the disturbance was introduced was recorded using the 

stopwatch. The most characteristic phase in the vortex manifested itself for the first time as a local twisted jet with subsequent 

clearly pronounced reverse motion. This definition of  the time moment is rather qualitative, since it does not involve any 

quantitative characteristic. However, the disturbance of  a rotating fluid produces vortices different in size, structure, intensity, 

and oscillation frequency. It is difficult to establish a simple unified quantitative criterion without losing the qualitative 

similarity. 

A reasonable approach may consist in constructing a dimensionless parameter on the basis of  the vortex characteristics 

and measuring the time it takes for the parameter to achieve the given value. However, in this case it is necessary to find a 

compromise between the strictness of  the parameter definition and the technological measuring capabilities which are rather 

scanty in the given case. We do not know in advance where the ftrst concentrated vortex will appear under an arbitrary 

disturbance of the rotating liquid; moreover, its location can vary. In these conditions any instrumental technique for measuring 

the local flow characteristics is unsuitable. The only way is to measure the velocity field. But the flows realized in the tests 

are strongly nonuniform and unsteady and the available techniques for measuring the velocity fields are either unsuitable or 

very expensive and labor consuming, and therefore, of low efficiency. The compromise way out is visual observations. 

Since it is difficult to perform any quantitative measurements of the vortex parameters in the process of visual 

observations, in order to register the moment of inception of the oscillating vortex we used the above qualitative definition. 

However, on the basis of  the observations, one can try to give its quantitative interpretation. Actually, the presence of the axial 

vortex jet can be reliably established only if the axial shift of buoyant particles in the vortex over the half-period of its 

oscillation exceeds the transverse size of  the vortex. Although there is a certain discrepancy in the sizes of  the vortices observed 

in different tests, the threshold value of the shift can be specified approximately as 1 cm. 
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In the great majority of cases, the approximate nature of the threshold value did not influence the measured inception 

time and the measurement accuracy, since the vortex passes the critical phase of its evolution very quickly, and the time 

measurement error depends on the behavior of  the oscillating vortex, and, in the best case, is equal to one period of  its 

oscillations. In actuality the qualitative character and roughness of the definition applied for the moment of  inception of  the 

vortex manifest themselves only with a slow rate of  vortex evolution, which results in an increase in the absolute measurement 

error. But since in this case the duration of the vortex formation is also great, this does not affect significantly the relative 

measurement error. Thus, the successful selection of  the moment for the measurements makes it possible to avoid extremely 

serious technical difficulties. 

Having discussed the measuring technique, let us consider the essence of the work. The duration of the formation 

process of oscillating vortices in the resonance excitation of eigenmodes was studied in [1]. It was shown that the resonance 

excitation of the inertial wave can be accomplished by a periodic disturbance only when a certain critical wave Reynolds 

number is exceeded. This condition leads in its turn to a limited set of eigenmodes capable of being excited. However, in 

practice the frequency of  the periodic disturbance of a rotating liquid is often not equal to one of  the frequencies of  the modes 

which can be excited. In this connection, knowledge of the criticality of  the vortex formation effect to the frequency of  external 

periodic disturbance is of concern. 

It has been reported in [1] that the time of  formation of concentrated oscillating vortices strongly depends on the 

excitation frequency and has its local minimum value when the excitation frequency is equal to one of the eigenfrequencies. 

In this paper we present a more detailed study of  this dependence and show that the equality of  the excitation frequency to one 

of the eigenfrequencies of undisturbed flow is not a necessary condition for vortex formation, and the effect of  formation of 

oscillating vortices falls in a rather broad disturbance frequency range. 

Several different runs of  experiments with a container of height H = 18.4 cm and invariable revolution period 3.00 

+ 0.01 see were performed to gain an idea of the typical character of the dependence of the vortex formation time on the 

disturbance frequency. The tests with the greatest number of measurements and the widest range of excitation frequency were 

held with the disturbance amplitude h/R = 0.08 and the most usual geometry, i.e., with M = 1. The results of  this run are 

shown by the points in Fig. 5 (the relative disturbance frequency f is along the horizontal axis, and the time of vortex initiation 
is along the vertical axis). Linear interpolation of the results is carried out at the plot. 

The experimental data on Fig. 5 are obtained by averaging over 3-10 measurements made in different tests under 

identical conditions. To calm the liquid and restore it into the initial state, a pause was made between the tests. During the 

pause the disturbance was removed. The minimum duration of the pause was 10 min, which for the given conditions is 

sufficient in most cases to provide good reproducibility of the measurement results irrespective of  the concrete time interval 

between the tests. Themeasurements were carried out with the frequency increment 0.02 for f <_ 3; and 0.04 for f > 3. In 

this case the error for f was at least an order of magnitude less than the frequency increment in the measurements. The points 

at which the formation of  concentrated vortices was not detected or took place after a long time are beyond the plot. The 

interpolated straight lines going upwards in Fig. 5 indicate their presence. If  no vortices appeared over a time equal to the 
minimum pause between the tests (10 min), the test was interrupted. 

From the results of  Fig. 5 one can observe the presence of at least six frequency intervals wherein the vortex formation 

was not found. All of  them are in the region of  low relative frequencies. The approximate location of the intervals is as follows: 

[0, 0.28], [0.32; 0.38], [0.48; 0.52], [1.04; 1.06] and in the vicinity of the points 0.6 and 0.82. However, one cannot be 

certain that whatever f may be, there is no vortex formation within the above intervals, because it is not inconceivable that there 

can be very narrow dips of the resonance curve. Representative in this sense is the point with f = 0.3 (at the extreme left of 

the plot). No vortex formation to the left or to the right of the point was found. To determine reliably the number and 

boundaries of "empty" spaces, one should thoroughly study the inertial spectrum using the criterion found in [1] from the mode 
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Reynolds number and carry out an experimental check of the questionable points. The author omitted these operations, since 

they are labor consuming and are inconvenient for the goals of this research. 

From the analysis of  the plot in Fig. 5 one can easily notice that there are no "empty" spaces with great f, although 

when f > 1 there are no modes with m > 1 in the spectrum. To explain the difference, one should recall wave attenuation 

due to viscosity. The effect of viscosity on the excitation of the inertial wave is characterized by the wave Reynolds number 

Re = fflbMh;~/(2vR) introduced in [1]. The efficient excitation of the inertial wave is possible only if the Reynolds number 

for the given wave exceeds a critical value. Since the scale of the wave is a factor of the Reynolds number, with fixed 

excitation frequency f only a limited number of modes of larger scale and more convenient geometry among those of the 

frequencies close to f can be excited. 
With low f the threshold scale for the waves is great; there are few modes capable of being excited, and they are often 

of considerably distinct frequency. For the given excitation frequency it may appear that there is no mode which can be excited 

nearby. In this case vortices do not originate, and the excitation due to the viscous attenuation of the inertial waves cannot 

disturb the flow. Hence the appearance of the "empty" space in the plot in Fig. 5 is clear. In the part of the range where these 

spaces occur, the dependence of  the vortex formation time on the excitation frequency is of the type of the set of explicit 

resonance minima which can be created by one mode, as well as a series of modes. 
The mode or modes that dominate in the formation of the vortices can be seen by observing the pattern of  flow with 

vortices. In this case the number n is determined from the number of  elementary vertical sections observed in the flow, while 

m is found as the number of  vortex oscillations in one revolution with respect to the disturbance generator. Taking into account 

the number and arrangement of the vortices and having measured their oscillation frequency, one can also reproduce the wave 

number j, if the latter is not too large. Thus, the resonance minimum with f = 0.40 to 0.46 is generated by the mode (3, 1, 

1); with f = 0.54 to 0.58, by the mode (3, 1, 2); with f = 0.62 to 0.80 by the modes (1, 4, 1) and (2, 1, I) and with f = 0.84 

to 1.02, by at least three modes: (1, 3, 1), (2, 1, 2), and (2, 1, 3). It is natural that with M = 1 not only the modes with m 

= 1 are excited, but the harmonics with high m as well. With higher disturbance frequencies the resonance minima are joined 

without leaving free spaces, which can be seen in Fig. 5. 
Thus, in the range f in which the eigenfrequencies are present, the character of the dependence of the vortex formation 

time on the excitation frequency is clear. The dimensionless frequency of the liquid oscillations of the mode with 

eigenfrequency fmjn and m ~ 0 equals mfmj n. Under normal excitation of  the mode with the help of M bulges, the number 

m should be divisible by M, while fmin --" f, and consequently the frequency of oscillations is approximately divisible by Mf. 

The experimental results indicate that the oscillating vortices are formed also with f > 2, where no eigenfrequencies 

are present. It appears that in this case the relationship fmin = f does not hold and the mechanism of vortex formation is 

somewhat different. The vortices are formed not only due to the excitation of  the mode with the oscillation frequency of  the 

liquid close to Mf or divisible by it, but also due to the generation of a subharmonic. Mainly it is this mechanism that is 

responsible for the generation of the vortices in the whole subcritical excitation frequency range. In all cases up to f = 3.56 

(the limit of the examined range) the mode was excited with half of the oscillation frequency as compared to Mf, while the 

wave geometry was determined by f. The relationship mfmj n --- 0.5Mf was satisfied instead of the approximate equality f and 

fmjn' At the least, subharmonics with three-different values of n, equal to 1, 2, and 3, were observed in the tests with different 

f. 

The subharmonic can be generated in the experiment even with f < 2, although the supercriticality probably plays a 

role. Thus, the excitation of  the subharmonic was observed in tests arranged in the same container with H = 18.4 cm, period 

of revolution T = 6 see, number of bulges M = 3, disturbance amplitude h/R = 0.12, and relative frequency for the modes 

with m > 1; for the modes with m = 1 disturbances with M = 3 are inconvenient from the geometric viewpoint. Nevertheless, 

the resulting flow pattern was the typical standing inertial wave with concentrated vortices, the vortices being composed of  three 

sections (which corresponds to n = 3) and oscillating synchronously to every other bulge encountered along the path. 

Thus, the generation of  the subharmonic with half oscillation frequency is obvious, and taking into account the values 

of  f and n, one can determine the resulting mode with great probability. It appeared to be the mode (1, 3, 3). The last example 

shows clearly how peculiar the mechanism of formation of concentrated oscillating vortices in a rotating fluid can be in each 
particular case. 

Now that the character of  the influence of the disturbance frequency on the time of  vortex inception is roughly 

understood, let us discuss the tendencies of  the flow evolution observed in the tests. The fact that there are no "empty" spaces 

with great f in the spectral characteristic of  the vortex formation (see Fig. 5) likely indicates that the modes capable of being 
excited are of  close frequency and, with any disturbance frequency f, there is always at least one mode of  suitable geometry 
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and frequency, whose excitation is accompanied by the formation of concentrated oscillating vortices. But then the resulting 

pattern of the flow with vortices should display the features of this mode. 

However, this is not always so in practice. The flow pattern commonly observed in the tests is that corresponding to 

another mode of  rather distinct frequency. This is shown by the discrepancy between the obtained and expected numbers of 

vortex sections and the values of  their oscillation frequency. 

The deviation of  the resonance frequency depending on the disturbance amplitude was also found, which can be 

illustrated by the example of  the results presented in Fig. 6, where the location of  the boundaries of  the resonance zone in the 

frequency f is shown as a function of  the disturbance amplitude h/R of the mode (3, 1, 1) in a container of  height H = 8.6 

cm with revolution period T = 2.99 see. The calculated eigenfrequency for this mode is 0.579. In this case, as in [1], the 

resonance zone was defined as the increment of the excitation frequency f in the vicinity of the eigenfrequency, within which 

the time of vortex formation differs by no more than one period of vortex oscillations. Figure 6 shows the approximating 

straight lines plotted for each boundary with the least squares method. 
The results in the plot point to the fact that with increase in 1,dR not only the width of  the resonance zone increases 

linearly, which was mentioned in [1], but also f decreases linearly for the middle point of  the resonance interval, which 

indicates the decrease of the effective eigenfrequency of the resonance mode. This effect is manifested in low containers. In 

higher containers (for example, of  H = 18.4 cm) the effect was not observed. However, if we do not confine ourselves to the 

region of experimentally accurate resonance and consider the resonance dip as a whole for the mode, which was obtained with 

different h/R, somewhat similar results can be found for containers of greater height as well. 
The above is illustrated in Fig. 7 where resonance curves for the formation time of  the oscillating vortices are 

presented, which were obtained with different disturbance amplitudes for the mode (3, 1, 1) in a container of  height H = 18.4 

cm with revolution period T = 3 see. The calculated eigenfrequency for this mode is 0.412. The experimental results are 

shown by the points; curves 1-4 represent a cubic spline interpolation and correspond to excitation amplitudes h/R equal to 

0.12, 0.08, 0.048, and 0.032. It is noteworthy that with increase in the disturbance amplitude the resonance dip expands 

asymmetrically: the shift of  the left wall is greater than that of the right one. This suggests again the decrease of  the effective 

eigenfrequency of the resonance mode. 
The experiments make it possible not only to reliably establish the above fact, but also to provide a reasonable 

explanation. In some of the experiments we observed steady flow regime and found, for example, that the excitation of the 

mode (3, 1, 3) can yield a steady flow with two- and one-section vortices. This suggests that the vortices in the wave have n 

equal to 2 or 1 and not to 3 as in the beginning. The conditions of the experiments were as follows: container height H = 18.4 

cm and radius R = 25 cm. M = 3, h/R = 0.12, f = 0.632. The initial experimental conditions for various regimes of steady 

flow varied only in the revolution period of the container, which was 6 and 4 sec for the two-section and one-section vortices, 

respectively. It was noticed also that in the steady flow regime the liquid on the whole rotates slower than the container. The 

level of deceleration could be estimated in measuring the revolution period of the suspended particles beyond the vortices. In 

the first case it appeared to equal - 7 sec, and in the second case, - 6 sec. It is this deceleration that is likely to be the reason 

for the reduction of  the frequency of free oscillations. 

Actually, the frequency of  rotation of the generator ~o and, accordingly, only the initial value of f = 1 - w/f] (which 

could be true in the case of  invariant rotation frequency fl of the liquid) were given and maintained in the experiments. But 

since f~ reduces with time, this led in the mentioned experiments to the reduction of  the observed eigenfrequency of free 

oscillations (which was calculated for constant rotation frequency of the liquid), and to the reduction of  the effective excitation 

frequency f which in the calculation based on a constant f~ was maintained equal to 0.632, which is higher than the 

eigenfrequency of the mode (3, 1, 3), which is 0.618. The calculation of f from the revolution periods of  a liquid obtained 

experimentally gives in the ftrst case 0.571, which almost coincides with the frequency of  the mode (3, 1, 2) equal to 0.569; 

and in the second case, 0.448, which corresponds to the right slope of the resonance dip of the mode (3, 1, 1) with the 

eigenfrequency 0.412. Thus, the origin of two- and one-section vortices becomes clear. 

It is also clear that there is a limit on general deceleration of rotation in laboratory conditions. The factor preventing 

further deceleration is viscous friction in the boundary layers, which is characterized not by the wave Reynolds number, but 

by the scale one, Re s = flRH/~. The higher the Re s, the higher the relative deceleration that can be achieved, and more 

intensive and diversified evolution of the flow structure is possible. This was proved by the above experiments. 

Through which mechanism does the substantial deceleration occur? Obviously, the mechanism cannot be trivially 

viscous, since the disturbance interacts with the liquid through an elastic membrane which rotates together with the liquid. 

Furthermore, as was shown above, in the experiments the effect of the viscosity is quite opposite. It should also be noted that 
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the rotation was observed to decelerate even in the case where the vortices are weak and not numerous. Most likely, the 

deceleration is primarily due to the force of nonviscous resistance against the body (bulge) motion. The force can be rather 

substantial with the relative motion velocities available in the experiment [6]. 

It is obvious that the deceleration of the liquid can lead to a reduction in the effective excitation frequency f = 1 - 

co/f~ only with positive 60. With negative ~0 the effective frequency f will tend to "drift" to the side of higher (or even 

supercritical) values. According to the current state f either subharmonics or the usual oscillations with current f in excess of 

the initial value will be excited during the flow evolution. The direction of the flow evolution in the most crucial practical case 

with r = 0 is of extreme interest and is not clear in advance. For the majority of cases the problem cannot be easily solved. 

Thus, at least two different mechanisms of formation of oscillating vortices have been found experimentally. The 

presence of nonviscous resistance with sufficiently high Reynolds numbers (both wave and scale ones) sooner or later creates 

conditions for generating the oscillating vortices in the basic flow during its evolution. This circumstance explains the absence 

of empty spaces in the frequency characteristic of the vortex formation time with high f. 

Summing up, we can state that the only factor preventing the formation of concentrated vortices during long periodic 

disturbance of the rotating liquid found for the time being is viscosity. With high Reynolds numbers over the disturbance 

frequency range examined the appearance of oscillating vortices depends only on time. Consequently, for the greater part of 

rotating flows it makes sense to discuss the appearance or absence of concentrated vortices only within the give n time interval 

from the starting moment of the disturbance. 

Finally, the results obtained in this work have traditional application to atmospheric vortices. Except for vortices of 

the smallest scale and of less interest, all atmospheric vortices are characterized by high values of the scale Reynolds number, 

and with allowance for the present disturbances and the wave Reynolds number. Therefore, with a sufficient lifetime the 

existence of a fine vortex structure is the rule rather than the exception. The cascade formation mechanism observed for vortices 

of different scale in natural conditions seems rather reasonable from the standpoint of the results presented. 

The author acknowledges the support of the International Science Foundation. 

REFERENCES 

1. 

2. 

3. 

4. 

5. 

6. 

V. G. Makarenko, "The characteristics of inertial resonances in a rotating fluid, ~ Prikl. Mekh. Tekh. Fiz., No. 2 

(1993). 
V. G. Makarenko and V. F. Tarasov, "Experimental model of a tornado," Prikl. Mekh. Tekh. Fiz., No. 5 (1987). 

V. F. Tarasov and V. G. Makarenko, "Experimental model of a whirlwind," Dokl. Akad. Nauk SSSR, 305, No. 2 

(1989). 
V. G. Makarenko and V. F. Tarasov, "The structure of the flow of a rotating liquid following motion of a body," 

Prild. Mekh. Tekh. Fiz., No. 6 (1988). 

H. P. Greenspan, Theory of Rotating Fluids, Cambridge Univ. Press (1968). 
P. J. Mason, "Forces on bodies moving transversely through a rotating fluid," J. Fluid Mech., 71, Part 3, 577-599 

(1975). 

85 


